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Abstract: This study focused on exploiting machine learning algorithms for classifying and predicting injury severity of 
vehicle crashes in Yemen. The primary objective is to assess the contribution of the leading causes of injury severity. The 
selected machine learning algorithms compared with traditional statistical methods. The filtrated second data collected within 
two months (August-October 2015) from the two main hospitals included 156 injured patients of vehicle crashes reported from 
128 locations. The data classified into three categories of injury severity: Severe, Serious, and Minor. It balanced using a 
synthetic minority oversampling technique (SMOTE). Multinomial logit model (MNL) compared with five machine learning 
classifiers: Naïve Bayes (NB), J48 Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and Multilayer 
Perceptron (MLP). The results showed that most of machine learning-based algorithms performed well in predicting and 
classifying the severity of the traffic injury. Out of five classifiers, RF is the best classifier with 94.84% of accuracy. The 
characteristics of road type, total injured person, crash type, road user, transport way to the emergency department (ED), and 
accident action were the most critical factors in the severity of the traffic injury. Enhancing strategies for using roadway 
facilities may improve the safety of road users and regulations. 
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1. Introduction 

Vehicles (cars, motorbikes, or bicycles) are globally safety 
tools for transportation. However, one of the negative results 
of its use is road traffic accidents (RTAs), which is one of the 
top ten leading causes of deaths. A global estimate of RTAs 
deaths is 1.35 million, and between 20 and 50 million suffer 
non-severe injuries. The most affected are the young 
pedestrians, cyclists, and motorcyclists [1, 2]. The behavior 
of riders, drivers, cyclists, and pedestrians are the crucial 
causes of accidents [3]. Driving/riding and using mobile 
phones or using drugs/alcohol simultaneously were reported 

as major causes of RTAs for young drivers. On the other 
hand, cognitive, visual, and mobility injury are factors 
causing accidents for elderly drivers [4]. The rapid economic 
growth in low and middle-income countries is parallel to a 
huge number of injuries due to greater accessibility to 
transportation. Due to the limited technology of vehicle 
control [5], it leads to the highest rate of RTAs in Africa and 
the Southern part of Asia [6]. 

There were many strategies employed to decrease the rate 
of crash injuries and related consequences of RTAs [1]; some 
include road safety efforts and targets, problem solving-
policies, and monitoring and evaluation [7]. The safety 
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management system practices linked with incident reduction 
have been proposed to be reliable and secure solutions that 
will lead to RTAs and injury prevention [8]. 

In Yemen, the violated traffic regulations, uncontrolled 
passenger movements, road conditions are the most probable 
causes of the accidents. In 2015, Sana’a traffic data showed 
that the trends of counted deaths per 10,000 vehicles were 
27.5, and the injuries and fatalities caused by driving at high 
speed were 38.1% of total RTAs [9]. Further studies showed 
that RTAs cause 12 % of all mortality, and the trends of 
vehicle crash injuries still high [9-12]. After this year, due to 
the political affairs, the database of the RTAs was unavailable 
for use.  

The causality models based on both statistical and 
reasonableness in viable decision making and regression 
models for predicting yearly deaths, fatalities, and injuries 
were applied [10, 12]. Unfortunately, these models could not 
show the RTAs trends in the presence of accident causes. 
Hospital case study shown that the majority of RTAs in 
Yemen affected the people less than 30 years old [13]. 
However, comprehensive studies combining road accidents 
and their relative leading causes are mostly needed in Yemen 
for boosting the safety and sustainable development of public 
health. 

Recently, machine learning techniques have become 
modern methods used in transportation safety studies to 
identify the substantial influences associated with crash 
injury severity [14, 15]. It is able to show the proportionality 
of each factor influencing RTAs from each type of vehicle 
[16].  

Other studies also used machine learning techniques to 
identify the most critical factors that might lead to crash 
accidents, investigate motorcycle crashes, and detect crash 
characteristics and influence of vehicle users in crash injuries 
[17-19]. In advance, these algorithms clarify the complex 
patterns associated with crash risk [20]. More detail in RTAs 
data, see [21] in counted data, regression model in prediction 
[22], artificial neural networks (ANN) [23], support vector 
machines (SVM) [24] and decision trees (DTs) [20]. 

Unlike statistical models, machine learning-based 
algorithms need no assumption for mathematical/statistical 
models that define the relationship between the dependent 
and independent variables. Machine learning algorithms can 
deal with nominal and discrete variables that have over two 
levels and handle well with multi-collinear explanatory 
variables [25]. 

In brief, previous studies partially contributed to the 
analysis and forecasting RTAs consequences by using the 
unspecified/counted data and traditional statistical methods. 

The contributing factors which effectively influence crash 
injury severities appeared to be the potential gaps, and 
applying machine learning-based algorithms became a 
leading tool to show the relationship between road accidents 
and associated causes. These algorithms were not used in the 
studies conducted in Yemen. Unlike traditional methods, 
these algorithms classified the observed data into several 
classes for having full access to every scenario that occurred 

on the accident scene before and after the accidents, which is 
the deepest analysis needed in Yemen. 

However, this study merely on assessing and analyzing the 
relative importance of characteristics and behavior of 
targeted variables in predicting injury severities of vehicle 
crashes, and then establish the effect rate of factors 
influencing RTAs. Due to the lack of studies focusing on 
contributing factors associated with crashes injuries in Yemen 
motivates this topic to relate with the comparison of selected 
machine learning algorithms (Support Vector Machines, 
Naïve Bayes, Random Forest, Multilayer Perceptron, and J48 
decision tree) and tradition statistical methods (Multinomial 
logit model) for predicting crash injury severities. 

2. Methods 

2.1. Data 

Despite several challenges in getting detailed data, we 
used secondary data collected in two ways. The records of 
the admitted crash injuries were obtained from emergency 
departments (EDs) in Sciences and Technology University 
Hospital (STUH) and Al-Gumhouri General Hospital (AGH) 
in the capital of Yemen (Sana’a city). The injured people 
were interviewed by a questionnaire that is designed by [26]. 
The data was collected between August 24, 2015, and 
October 8, 2015, and it was published in [13]. The injury 
severity scoring class is used in three injury levels: minor 
class noted for simple or no apparent injury, serious class 
noted for the injury that needs some treatment, and severe 
that requires intensive medical or surgical management.  

2.2. Participants 

The second data combining cases from recorded files and 
questionnaire were 156 (injuries and deaths with 128 males 
and 28 females). The data enclosed 128 roads and was 
collected from two main hospitals (STUH and AGH). 

2.3. Data Analysis Tools 

The data analyzed using the Waikato Environment for 
Knowledge Analysis (WEKA), which is a group of data 
mining algorithms implemented using java tools and created 
by the University of Waikato in New Zealand. This 
workbench was used in similar studies since it is an open-
access software tool containing software that assists in 
functionalities of data mining such as data preprocessing, 
visualization, classification, feature selection, regression, 
clustering, and association rules [27]. WEKA workbench 
provides over 100 classification algorithms, 75 algorithms for 
preprocessing data, 25 algorithms for dimensionality 
reduction and evaluation metrics, and 20 algorithms for 
clustering methods. WEKA toolkit version 3.9 was freely 
downloaded and installed on a Lenovo IdeaPad S410p 
computer equipped with 4 GB RAM, 2.23 GHz, a 64-bit 
operating system, and an Intel (R) Core (TM) i5- 4200U 
CPU to perform the experiments. 
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2.4. Preprocessing of Dataset 

In this study, first, we cleaned the data and transformed the 
continuous attributes into categorical attributes. The entire 
dataset contains 24 attributes that converted from numeric to 
nominal attributes. Those attributes included accident time, 
road types, road users, road conditions, vehicle types, and 
organs injured for victims. The response variable is 
multiclass, the minor injury takes the value (1), the serious 
injury takes the value (2), and the severe injury takes the 
value (3). 

2.4.1. Balancing Data 

Most road accident data are imbalanced data because of 
the minor injury class has more instances than serious or 
severe injury class. In our data, the minor class has 95 injured 
cases, whereas the serious and severe injury classes, 

respectively, contain 35 and 26 cases. When the training 
dataset is excessively imbalanced, the predicted of the 
minority class will not detect the truth information and will 
affect the prediction accuracy [28]. In this study, a synthetic 
minority oversampling technique (SMOTE) [29] was used 
for balancing the data. 

2.4.2. Attribute Selection 

After the data became balanced, we applied 
CorrelationAttributeEvel tools in WEKA for selecting the 
most correlated attributes with class data. Among 24 
categorical attributes, seven attributes were removed. The 
removed attributes are education status, occupation, accident 
time, vehicle type, cuts bites or open wound, sex, and road 
conditions. The concluding list of the attributes and their 
descriptions are presented in Table 1. 

Table 1. Descriptive of variables. 

 
variables Total (%) Minor (%) Serious (%) Severe (%) 

Hospital name 
Science & Technology Hospital Al-
Gomhouri General Hospital 

66.7  53 77.1 100 

33.3 46.3 22.9 0 

Age 

1: <25 59.6 61.1 48.6 69.2 

2: 25- 50 33.3 31.6 42.9 26.9 

3: Elder than 50 7.1 7.4 8.6 3.8 

Sex 
1: Male 82.1 84.2 80 76.9 

2: Female 17.9 15.8 20 23.1 

Occupation 

1: Public employ 17.3 18.9 20 7.7 

2: Private employ 7.1 9.5 5.7 0 

3: Business own 5.1 5.3 0 11.5 

4: Farmer 5.8 2.1 11.4 11.5 

5: Daily worker 12.8 13.7 14.3 7.7 

6: Student 44.2 44.2 37.1 63.8 

7: Other/unspecified 7.7 6.3 11.4 7.7 

Educational Status 

1: Illiterate 7.7 6.3 5.7 15.4 

2: Basic school in 31.4 27.4 37.1 38.5 

3: Secondary education 18.6 17.9 20 19.2 

4: University education 27.6 35.8 20 7.7 

5: Under university school-age 14.7 12.6 17.1 19.2 

Accident time 

1: 00: 00	−< 	06: 00 1.3 2.1 0 0 

2: 06: 00	−< 	12: 00 39.1 42.1 37.1 30.8 

3: 12: 00	−< 	18: 00 48.1 45.3 48.6 57.7 

4: 18: 00	−< 	00: 00 11.5 10.5 14.3 11.5 

Accident total injured 
persons 

1: One 55.1 48.4 62.9 69.2 

2: Two 13.5 17.9 2.9 11.5 

3: More than two 31.4 33.7 34.3 19.2 

Transportation way to 
the hospital 

1: Ambulance 12.8 8.4 11.4 30.8 

2: Tax 70.5 76.8 71.4 46.2 

3: Walking 1.9 3.2 0 0 

4: Private care \ Heavy vehicle 14.7 11.6 17.1 23.1 

Road type (Infrastructure 
cause) 

1: Urban highway 54.5 61.1 51.4 34.6 

2: Rural highway 28.2 22.1 28.6 50 

3: Urban subway 10.3 12.6 2.9 11.5 

4: Rural Subway 7.1 4.2 17.1 3.8 

Road user 

1: Vehicle’s driver 7.7 8.4 2.9 11.5 

2: Car’s driver 21.2 21.1 22.9 19.2 

3: Motor’s driver 16.7 16.8 22.9 7.7 

4: Motor’s passengers 13.5 20 2.9 3.8 
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variables Total (%) Minor (%) Serious (%) Severe (%) 

5: Heavy truck’s Driver/Passengers 0.6 0 0 3.8 

6: Bus’s driver/passenger 4.5 4.2 5.7 3.8 

7: Cyclists 3.8 4.2 0 7.7 

8: Pedestrians 30.1 23.2 40 42.3 

9: Other/unspecified 1.9 2.1 2.9 0 

Road conditions (E2) 
1: Paved 91 92.6 85.7 92.3 

2: Unpaved 9 7.4 14.3 7.7 

Vehicle type 

1: Motorbike 37.2 42.1 31.4 26.9 

2: Car 45.5 43.2 48.6 50 

3: Bus 8.3 7.4 14.3 3.8 

4: Heavy vehicle 9 7.4 5.7 19.2 

Crash type 

1: Vehicle-vehicle 30.1 35.8 28.6 11.5 

2: Vehicle-person 36.5 28.4 45.7 53.8 

3: Vehicle- object 33.3 35.8 25.7 34.6 

Accident action 
(Environmental 
condition-3) 

1: Crossing the road 11.5 5.3 20 23.1 

2: Walking on the sideway 14.1 11.6 20 15.4 

3: Getting on/off a public transportation 3.8 4.2 5.7 0 

4: Getting on/off a private transportation 0.6 1.1 0 0 

5: Driving/passenger a 4 wheel vehicle 28.8 28.4 25.7 34.6 

6: Riding/passenger a 2 wheel vehicle 31.4 38.9 25.7 11.5 

7: Other 9.6 10.5 2.9 15.4 

Head 
1: Not injured 53.8 64.2 54.3 15.4 

2: Injured 46.2 35.8 45.7 84.6 

Limbs 
1: Not injured 35.3 30.5 25.7 65.4 

2: Injured 64.7 69.5 74.3 34.6 

Trunk 
1: Not injured 73.7 73.7 88.6 53.8 

2: Injured 26.3 26.3 11.4 46.2 

Fracture 
1: No 67.9 93.7 17.1 42.3 

2: Yes 32.1 6.3 82.9 57.7 

Sprain strain or 
dislocation 

1: No 90.4 89.5 94.3 88.5 

2: Yes 6.9 10.5 5.7 11.5 

Cuts bites or open 
wound 

1: No 78.8 81.1 80 69.2 

2: Yes 21.2 18.9 20 30.8 

Bruise or super facial 
injury 

1: No 26.3 12.6 34.3 65.4 

2: Yes 73.7 87.4 65.7 34.6 

Concussion 
1: No 93.6 98.9 97.1 69,2 

2: Yes 6.4 1.1 2.9 30.8 

Organ system injury 
1: No 84 100 85.7 23.1 

2: Yes 16 0 14.3 76.9 

injured status in ED 

1: Treated 59 91.6 14.3 0 

2: Admitted to ER 32.1 6.3 74.3 69.2 

3: Referred to another hospital 7.1 1.1 8.6 26.9 

4: Died 0.6 0 0 3.8 

5: Other 1.3 1.1 2.9 0 

 

2.5. Machine Learning Classifiers 

In this study, the target variable is crash injury severities 
containing one of three possible outcomes (severe, serious, 
and minor). The most suitable function of machine learning 
is classification. The supervised learning algorithms contain 
classifiers that are able to utilize and classify datasets and 
provide interesting results. Classification methods are 
predictive techniques used to forecast classes of a target 
variable from measurements of one or more attributes. The 
classification step is processed into three steps: Input has a 

defined set of known explanatory variables, classifier to 
forecast the explanatory variables whose value is unknown, 
and last, the output gives unknown explanatory variables 
determined by other known explanatory variables because of 
using a classification algorithm [30]. 

Several classifiers can handle various classification 
problems in WEKA according to their categories as 
divided into sub-packages (Bayesian classifiers, lazy 
classifiers, decision trees classifiers, functions algorithms, 
meta-learning algorithms, rule-based algorithms, and 
miscellaneous) [31]. WEKA was used in this study 
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because it is an open-access software freely available 
under the general public license. It is a Java programming 
language compatible with much modern computing 
platform and comprises a complete set of data 
preprocessing and modeling methods. In the following 
sub-sections, a short explanation of the some selected 
classification algorithms used in this work is presented. 

2.5.1. J48 Decision Tree 

J48 decision tree classifier is an open-source of the C4.5 
algorithm implemented in WEKA that generates a decision 
tree through information entropy. This method uses a famous 
approach known as divide-and-conquer to solve the learning 
problem from a group of independent instances. It uses an 
endogenous attribute to choose a target value of a new 
instance. In this process, the interior node of the decision tree 
represents the unique attributes. The branches between nodes 
illustrate the possible values that the attributes can have in 
the observed instances, and the terminal nodes represent the 
final node of the class [32]. 

2.5.2. Random Forest (RF) 

The RF approach uses the decision tree algorithm for 
parameterization and mixing a sampling procedure, 
subspace technique, and an ensemble strategy to optimize 
the model building. RF principle is to aggregate many 
binary decision trees as following: the use of bootstrap 
samples (obtained by randomly selecting 
  observations 
with replacement from the learning set L) instead of the 
whole sample L and the construction of a randomized tree 
predictor instead of CART on each bootstrap sample [33]. 
In classification problems, it selects a majority vote 
among all individual tree predictions and predicts new 
instances to the majority vote class. 

2.5.3. Naïve Bayes (NB) 

NB is a robust learning algorithm for classification in 
WEKA, based on Bayes’ rule with a strong assumption that 
the attributes are conditionally independent in a given class. 
The advantages of naïve Bayes classification are often to 
deliver a competitive classification accuracy, computational 
efficiency, and many other desirable features, including 
multi-classification [34]. 

2.5.4. Support Vector Machine (SVM) 

SVM is a powerful binary classification method that 
primarily performs classification step by constructing hyper-
planes in a high or multidimensional space that separates the 
instances that are belonging to different class labels [35]. To 
achieve the classification target for multiclass by applying 
SVM, three popular methods (one against all, one against 
one, and directed acyclic graph) used, and due to 
classification accuracy, directed acyclic graph-SVM marked 
to be more robust [36]. In this study, SVM implemented 
using the SMO algorithm in WEKA software that uses one 
against one method. 

2.5.5. Multilayer Perceptron (MLP) 

MLP is a feed-forward neural network classifier with 

more than one hidden layer. It uses linear or nonlinear 
activation functions for computing the weighted sum of 
input and biases, that is used to decide if a neuron can be 
fired or not [37]. This algorithm involves an iterative 
procedure for minimization of the error of the function for 
achieving good prediction with adjustments of weights 
[38]. 

2.5.6. Multinomial Logit Model (MNL) 

The MNL model is an upgraded version of binary logit 
regression, and both are traditional statistical methods 
applied to predict the probability of class association on a 
predicted variable depends on numerous predictor variables. 
The desirable variable in inquiry is nominal and for which 
there are over two categories, while the predictor variables 
can be dichotomous or continuous. MNL is famous in multi-
classification since its ability to tolerate two or more 
categories of the outcome variables and applies maximum 
likelihood estimation to assess the probability of categorical 
membership. MNL relies on independence normality, and 
multicollinearity assumptions [39]. 

2.6. Parameter Setting 

The data were balanced in WEKA using SMOTE 
oversampling technique. After the data became balanced, 
randomly split into train data (70%) and test data (30%). 
The parameters are shown in Table 2. After selecting the 
best parameters, we applied the selected machine learning 
algorithms for the classification step. 

Table 2. Parameter settings. 

Algorithm parameter settings 

NB Weka parameter default values (W. P. D. V) [40] 

MLP L= 0.2; M = 0.1; W.P.D.V 

SMO Built calibration models = True; 

 Calibrator LibSVM; W.P.D.V 

J48 BinarySplit = True; W.P.D.V 

RF K = 5; I = 200; W.P.D.V 

MNL ridge = 1.0E-12; W.P.D.V 

2.7. Evaluation 

For evaluating the classifier performance, the 
following evaluation metrics are used: confusion matrix, 
accuracy, precision, recall, F-measure, and Kappa 
statistics. The confusion matrix shows the well predicted 
and misclassified instances. The accuracy measures the 
ratio of correctly predicted instances over the total 
number of the whole dataset. Recall calculates the rate of 
the instances that are predicted correctly positive. 
Precision measures the instances that are predicted 
correctly positive from the total predicted instances in 
the positive class, F-measure measures the harmonic 
mean between the recall value and precision value [41]. 
Kappa statistic shows the goodness of the observed 
agreement (�
)	 in the classifier over the predicted 
agreement (��)	that is predicted by chance [42]. 
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Table 3. Binary confusion matrix. 

 
Predicted class  

Yes No 

Actual 
class 

Yes True positive (TP) False Negative (FN) 
No False-positive (FP) True Negative (TN) 

The columns in the Table 3 denotes the predicted class 
instances, rows indicate the actual class instances, and 
diagonal elements represent the accurate prediction. Thus, the 
performance of a classifier can be visualized in the confusion 
matrix [32]. This confusion matrix can be generalized to be 
used for multiclass problems. 

According to [27], True positives (TP) and true negatives 
(TN) are correctly classified. A false positive (FP) is noted 
for the cases that are wrongly classified as “Yes” and a false 
negative (FN) is noted for the cases that are improperly 
classified as “No”. TPR measures the rate of the cases that 
are correctly identified, whereas FPR measures the rate of the 
cases that are incorrectly classified. The evaluation metrics 
can be given as follows: 

��� =
��

�����
                                   (1) 

��� =
��

�����
                                   (2) 

��������
(�) =
��

�����
                             (3) 

����  (�) =
��

�����
                             (4) 

!��"���# =
�����

�����������
                      (5) 

F − measure	 =
+∗�∗-

��-
	                            (6) 

Kappa	St	 =
�2	3�4	

53�4
                                    (7) 

3. Experiment and Analysis 

In this study, machine learning classifiers and MNL were 
applied to model crash injury severities. The injury severity 
attribute is the class attribute and takes three values as target 
values (Minor, Serious, and Severe). Distributing values in 
the dataset are presented in Table 1. The numbers (1, 2 …10) 
present values assigned to each variable; rows represent 
attributes, and columns represent the classes of these 
attributes. Some attributes were environmental leading 
causes (E1-E3): accident action, road conditions and accident 
time, and infrastructure leading causes as characteristics of 
the road type. In total, 156 crash records were reported 
between August 24, 2015, and October 8, 2015. 

Table 4. Expermintal confusion matrix. 

Classifier NB SVM MLP J48 RF MNL 

Class Predicted class M S D M S D M S D M S D M S D M S D 

Actual 
class 

M 21 1 0 21 1 0 21 1 0 21 1 0 22 0 0 20 2 0 

S 3 25 4 2 30 0 4 27 1 4 27 1 2 28 2 4 27 1 

D 1 4 26 1 4 26 1 2 28 0 1 30 1 1 29 1 3 27 

Table 5. Classifiers evaluation metrics. 

Classifier TPR FPR Precision Recall F-Measure Kappa Statistic Accuracy (%) 

NB 0.847 0.079 0.847 0.847 0.846 0.769 84.7 

SVM 0.906 0.048 0.914 0.906 0.906 0.857 90.59 

MLP 0.894 0.049 0.900 0.894 0.895 0.840 89.41 

J84 0.918 0.037 0.921 0.918 0.917 0.875 91.76 

RF 0.948 0.025 0.949 0.948 0.948 0.922 94.84 

MNL 0.871 0.063 0.876 0.871 0.872 0.823 87.05 

Table 6. Classifiers evaluation metrics by class. 

Classifier Class TP Rate FP Rate Precision Recall F-Measure 

NB 

Minor 0.840 0.063 0.955 0.894 0.894 

Serious 0.833 0.094 0.781 0.806 0.806 

Severe 0.867 0.074 0.839 0.852 0.852 

SVM 

Minor 0.875 0.048 0.955 0.913 0.913 

Serious 0.857 0.094 0.938 0.896 0.896 

Severe 1 0.000 0.839 0.912 0.912 

MLP 

Minor 0.808 0.079 0.955 0.875 0.875 

Serious 0.900 0.057 0.844 0.871 0.871 

Severe 0.966 0.019 0.903 0.933 0.933 

J48 

Minor 0.840 0.063 0.955 0.894 0.894 

Serious 0.931 0.038 0.844 0.885 0.885 

Severe 0.968 0.019 0.968 0.968 0.968 

RF 
Minor 0.926 0.028 0.962 0.943 0.943 

Serious 0.941 0.032 0.941 0.928 0.928 
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Classifier Class TP Rate FP Rate Precision Recall F-Measure 

Severe 0.972 0.016 0.972 0.972 0.972 

MNL 

Minor 0.800 0.079 0.909 0.851 0.851 

Serious 0.844 0.094 0.844 0.844 0.844 

Severe 0.876 0.063 0.871 0.872 0.872 

 
104 cases were from the Emergency department of Science 

and Technology University Hospital (49% minor, 26% 
serious, and 25% severe sub-classes respectively), and 52 
collected from Al-Gomhouri General Hospital (84.6% minor, 
15.4% serious and 0% severe sub-classes respectively). 
Approximately 60.9%, 22.4%, and 16.7% were classified 
into minor, serious, and severe classes respectively. Min-
age=1, average=23, and Max-age=65, students=61 (nursery 
and school pupils), University students=10, workers=47 
(public and daily workers), private employees = 34, and 
unemployed=10, drivers=40, passengers=59, and 
pedestrians=50. After the preprocessing step, the dataset was 
loaded as an Attribute Relation File Format (ARFF) file into 
WEKA tools. Seventeen predictor factors (attributes) were 
applied with the class variable to create models for 
forecasting the level of crash injury severities. Table 4 
presents the confusion matrix for each classifier where M, S, 
and D are respectively noted for minor, serious, and severe 
injury. Performance metrics of all the five model types, 
specifically, it shows the confusion matrix, TPR, FPR, 
precision, recall, F-measure, Kappa statistics, and 
classification accuracy obtained using a randomly splitting 
method for each of the five classifiers. For each class, the 
confusion matrix tells how instances from that class 
recognized the classifications used in this study. All correctly 
classified are in the diagonal of the contingency table. 
Therefore, it is possible to examine the matrix for errors 
visually. Table 4 indicates the confusion matrix of predicted 
class with all correctly classified are in the diagonal. Table 5 
showed the performance metrics (TPR, FPR, Precision, 
recall, and accuracy) for each classifier. Table 5 indicates the 
performance metrics by class for each class. The NB 
classifier was the worst classifier that achieved an accuracy 
of 84.7%, with a precision of 0.84, 0.833, and 0.867 for 
minor, serious, and severe, respectively. For the SVM, the 
accuracy achieved was 90.59%, with a precision of 0.875, 
0.857, and 1 for minor, serious, and severe, respectively. For 
MLP, the accuracy was 89.41%, with a precision of 0.808, 
0.900, and 0.966 for minor, serious, and severe, respectively. 
For J48 classifier achieved an accuracy of 91.76%, with the 
precision of 0.840, 0.931, and 0.968 for minor, serious and 
severe, respectively. The best classifier that achieved high 
performance is RF with an accuracy of 94.84%, with a 
precision of 0.926, 0.941, and 0.972 for minor, serious, and 
severe, respectively. MNL classifier achieved an accuracy of 
87.05%, with a precision of 0.909, 0.844, and 0.871 for 
minor, serious, and severe, respectively. This table shows the 
comparison amongst classes for each classifier through TP 
and FP rates, precision, recall, and F-measure. 

Several features of visualizations of the threshold curves are 
presented in Tables 5 and 6, and Figures 1 and 2. These tables 

and figures indicate that for each classifier, the accuracy, recall, 
F-measure, and Kappa statistics were significantly higher than 
0.7, and some fall in the acceptable range of substantial (0.75-
0.85), and another fall in perfect agreement ranges (0.857-1.0). 
However, the values of these statistical tests indicate that most 
of the corresponding classifiers have a greater ability and 
useful to classify crash injury severities correctly than 
traditional statistical methods represented by MNL in this 
study. Additionally, four machine learning techniques are 
better in predicting all injury severity classes. Results indicate 
that RF was the most accurate classifier with the highest TPR, 
precision, and recall, and lowest FPR. 

 

Figure 1. Classifiers comparison based on F-measure and Kappa statistics. 

 

Figure 2. Classifiers comparison based on the accuracy. 

The second was j48 and then followed by SVM and MLP 
with closely in the accuracy but differ with FPR, with 
slightly better performance metrics than the traditional 
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method MNL and NB. RF performed well in other studies 
that obtained by [27, 14], but it slightly differs from those 
studies by achieving higher accuracy. The goodness of the 
accuracy that we got might be achieved well due to the 
resampling SMOTE method.  

For checking the performance of RF against the other 
classifiers based on weighted average F- Measure, paired t-
test has proved reliable for comparing machine learning 
algorithms in related studies [43, 44], and it used for the 
same purpose in this study. After checking the normality of 
the data, a paired t-test is used for the mean comparison of 
the weighted average F- Measure for RF and the other 
proposed classifiers. The results are shown in Table 7, and it 
indicates that RF performed better than the other classifiers, 
especially NB and MNL. 

Table 7. Mean comparison results. 

Pair Mean difference t-Statistic Sig 

RF vs NB 0.0467 5.764 <0.0001 
RF vs SVM 0.0199 2.645 0.027 
RF vs MLP 0.0223 3.631 0.005 
RF vs J48 0.0259 2.967 0.016 
RF vs MNL 0.0664 3.836 0.004 

Root mean square error (RMSE) also can evaluate the 
model and show the error of the classification process and the 
misclassification cases [45]. The classification process was 

repeated ten times, as shown in Figure 3. It indicates that RF 
has less RMSE than the other classifiers and is more stable 
than the other classifiers. Table 8 shows the importance of the 
attributes that contribute to determining the relation between 
the class (injury severity scoring) and the independent 
attributes. It was obtained in WEKA– RF tree-compute 
Attribute Importance (set True). The remaining seven 
attributes were deleted in the feature selection step. 

 

Figure 3. Root mean square error of the classifiers. 

Table 8. The importance of the attributes. 

Injury leading 

causes 

Variable Road type Total injured persons Crash type Road user Transport way to ED Accident action 

Rank 0.56 0.49 0.48 0.47 0.47 0.47 

Injury-related 
factors 

Variable Fracture injured status in ED Concussion Organ system injury Bruise or superficial injury Age 
Rank 0.6 0.57 0.55 0.54 0.51 0.5 
Variable Trunk Hospital name Limps Head Sprain strain or dislocation 
Rank 0.49 0.47 0.46 0.41 0.31 

 
According to the contributing factors, this study shows that 

road type, crash type, road user, accident action, 
characteristics of road type, and collision partners had a 
similar impact on road accidents in different vehicles in other 
countries [27, 46] The predicted leadings causes 
(environmental and infrastructure causes): the behavior of 
road users (cyclist and pedestrians) identified as common 
causes, the activity during an accident, characteristics of 
road-type, ways of transport crash injuries to the hospital, 
collision type, vehicle type (motors are exposing their users 
to high risks of crash injuries and fatalities) and road 
shoulder condition; detected to have a significant impact in 
vehicle crash injury severity. Some of these predicted 
environmental and infrastructure leading causes, and others 
are similar to those predicted in the cyclist crash severity in 
Spain [46]. The factors that are related to the injured situation 
have an impact on injury severity scoring, and it can be 
recognized from Tables 1 and 8. 

This study has several limitations. There was a lack of 
access to the road traffic police database due to the political 
situation in Yemen. The previous studies only used the 
counted mortalities data published by the Central Statistical 

Organization in Yemen (Yearly statistical books: 1991–2013), 
but RTAs causes were not identified in these books, and its 
data were not suitable for this study. Regarding the data 
collection procedures and under-conditions of participants, 
some environmental causes (weather conditions), visibilities 
of the streets, violating road safety regulations (speed, over-
weights), and other clarification of streets (junctions, crosses) 
which probably lead to the vehicle crashes were not reported. 

Regardless of these challenges, some strategies are 
recommended to diminish the severity of injuries in vehicle 
crashes in Yemen. These safety strategies include the use of 
roadway facilities such as road signage and speed bump at 
junctions, implementation of laws on red-light violations and 
speed limit, and road safety and behavior management of 
road users in either urban or rural villages. These are 
essential strategies for improving and achieving sustainable 
development goals in declining mortality. Developing 
visibility on the roadway, especially with street lighting and 
visible road allocation, also can be applied. Attention must be 
taken to the behavior of road users as established in some 
studies [47-49]. 
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4. Conclusions 

This study compared machine learning algorithms and 
traditional statistical methods for classifying and predicting 
injury severity of vehicle crashes. Based on performance and 
errors as revealed by evaluators, machine learning algorithms 
were substantially classified and predicted vehicle crash 
injury severity better than traditional methods. Most crash 
injury severity data are imbalanced, and the severe injury 
level has the least instances comparing with the remaining 
levels. The oversampling method SMOTE used for balancing 
crash injury severity data, and it helped in improving the 
classification accuracy. RF was the best classifier that got 
high accuracy and low misclassification cases. The 
determined effect rate of relative factors (environmental and 
infrastructural leading causes) that influence injury severity 
in the vehicle crash shows that awareness and policymakers 
should improve its conditions. 
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