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Abstract 

The increasing effects of noise pollution have necessitated the prediction of noise levels. In this regard, it has become very 

prudent to find models which are practically applicable and have the capability to predict noise levels with accuracy. In this 

project, two dimensionality reduction techniques namely the Principal Component Analysis (PCA) and Partial Least Squares 

(PLS) were used in truncating the dimensions of observed noise levels data collected in the Tarkwa Mining Community (TMC) 

for which the data with reduced dimensions served as input data for a Back Propagation Neural Network noise prediction 

model. The accuracies of the techniques were determined using statistical indicators. The Partial Least Squares technique had a 

better accuracy with RMSE of 1.135 when hybridized with the Back Propagation Neural Network. The performance of the 

Principal Component Analysis was also with RMSE of 1.373 and that of the observed noise data produced an RMSE of 1.433. 

Graphical representations also showed the precision of individual predicted noise levels compared to the observed noise levels. 

The importance of the techniques used in predicting noise levels cannot be overemphasized based on the results obtained. 
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1. Introduction 

Humans are prone to all kinds of hazards. Noise comes as 

no exception to the number of hazards the human race face. 

In fact, man has lived with noise from time immemorial. 

Noise is an unwanted sound judged to be unpleasant, loud or 

disruptive to hearing. Noise evolves from various sources, 

some of which can be completely controlled and others, 

which are created from sudden happenings of natural phe-

nomena become daunting a task to curtail. Taking into con-

sideration the intense noise that comes with volcanic erup-

tion, thunderstorms and other phenomena of its ilk. 

Noise is also generated by the engine and exhaust systems 

of vehicles by aerodynamic systems and by interaction be-

tween the vehicle and its supporting systems [15]. From all 

the aforementioned sources, it is evident that noise genera-

tion and its effects are inevitable and their complete eradica-

tion from the social environment is fairly impossible in this 

present time. Sound perception by humans is in the range of 

20 Hz to 20 kHz but the ear is far more sensitive to sound in 

the ranges of 1 kHz and 4 kHz [14], above which is detri-

mental to hearing. 
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Noise has been considered to be only an accident product of 

human undertakings, but just a few years back, authorities 

decided to catalogue and deal with this canker. Noise pollution 

is currently more dominant in the mining communities at an 

alarming rate. This is due to a number of factors, some of 

which include infrastructural development, social development 

and high influx of people from different cultural backgrounds, 

with implication of increased generation of noise [3]. 

An array of literature suggests and confirm that noise pol-

lution does not only cause hearing impairment, also psycho-

logical disorders, interference with speech, sleep disorders, 

damaged brain and an effect on job performance as about 30 

million people are exposed to high sound levels on their jobs 

in the United States [6]. It is worthy to note that commercial 

areas experience the highest noise levels, industrial areas 

follow, then residential areas fall lowest at the pecking order 

as reported by [5]. The Tarkwa Mining community shares 

these characteristics especially in its commercial areas where 

mining activities, movement of vehicles and trade between 

inhabitants breed unpleasant sound. From noise produced 

during the excavation of overburden, loading and dumping 

and transport, to sound from vehicle horns and loud music 

played on and along streets, accompanied with the cacopho-

ny of noise created by traders when undertaking their busi-

ness ventures, noise pollution continuous to emanate intense-

ly in the mining communities. 

The United States Environmental Protection Agency sug-

gests that noise above 80 decibels are detrimental to the hu-

man health, of which children are susceptible to noise above 

60 decibels [7]. Also, the average noise levels in mine sites fall 

between 90 dBA and 150 dBA on mining floors based on pre-

liminary analyses reported by [4]. This gives evidence of the 

high noise levels produced in the Tarkwa Mining Community. 

With all the stated causes and effects, it is of much essence 

for noise levels to be predicted not only to find remedies to con-

trol the menace of noise pollution in the environment but also to 

aid in the urban planning and development. Albeit many studies 

been done with regards to the use of modern techniques such as 

Neural Networks in predicting noise levels [8-11] it can be stat-

ed that prediction of noise levels using dimensionality reduction 

techniques [1, 2, 12], such as Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) in conjunction with the 

Back Propagation Neural Network (BPNN) in precise predic-

tion of traffic noise levels have not been explored and their ca-

pabilities have not been duly ascertained in this regard. Hence 

there is the need for the use of these modern techniques in pre-

dicting noise levels. Therefore, in this particular study future 

noise pollution levels were predicted using the Principal Com-

ponent Analysis and the Partial Least Squares in conjunction 

with the Back Propagation Neural Network. 

2. Materials and Methods Used 

2.1. Study Area 

Tarkwa is the capital of the Tarkwa-Nsuaem Municipal area, 

a Municipality in the Western Region southwest of South 

Ghana. The area has an average height of about 70 meters and 

known to be undulating. The peak of the elevation ranges from 

150 and 300 meters above sea level [2]. The town is noted as a 

center of Gold and manganese mining. The number of mining 

companies cluster between the villages of Aboso and Tamso 

[16]. The Tarkwa Mine has the distinction of being one of the 

largest gold mines in the world. Approximately 24 tonnes of 

Gold is produced annually and 100 million tons of earth is 

moved to achieve this production rate [13]. 

 

Figure 1. Tarkwa Mining Area. 
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Due to the number of mining activities in the area, a num-

ber of people who are not indigenes have come to reside in 

the town for a number of purposes some of which include 

employment, businesses and trade. This has increased the 

number of transport systems in the area since there is the 

need for movement from place to place. Cars being the main 

means of transportation for the inhabitants. The area has an 

average climate condition of 25 degrees Celsius. Over the 

past few years, the Tarkwa community has experienced tre-

mendous infrastructural developments including road con-

structions, building of health posts, education, industries, 

banking, hospitality services and private business [3]. Figure 

1 shows the study area as inserted in the map of Ghana. 

2.2. Field Data Collection 

The geo-spatial locations of the purpose-designed moni-

toring stations (PMS) in the TMC were surveyed using Gar-

min GPS 60CSx handheld Global Positioning System (GPS) 

of 2 m accuracy. A calibrated Larson Davis‟s SoundTrack 

LxT Sound Level Meter was used to measure the noise levels 

in the study area. The measurements of the PMS were taken 

at street level and were also determined with the aid of the 

city digital map. To avoid noise reflections, the noise-level 

meter was set on a tripod at about 1.5 m above the ground 

level and separated from the noise sources by at least 1.5 m. 

This decision was made in connection with what has been 

reported and accepted in the literature. For example, in [16] 

used 1.5 m above ground level and 1.22-1.52 m from the 

source of the noise. The tolerance of the calibrated Larson 

Davis‟s Sound Track LxT trademark device is ±0.6 dBA. A-

weighted instantaneous sound pressure levels were recorded 

three times daily at the selected positions in the study area. 

The total number of the points used for the modelling was 50. 

2.3. Methods Used 

2.3.1. Partial Least Squares 

The Partial Least Squares is a method that has been ap-

plied in many fields of science. It also takes up the name 

projection to latent structure due to its functionality. In the 

method, latent factors are determined based on the dependent 

and independent variables. The term latent explains the fact 

that though the factors are hidden, they explain much of an 

information about a particular subject or technically, a varia-

ble. Basically, it tries to determine the best components 

which can explain much information in both the dependent 

and independent variables. 

The scores for the data „ta‟ and „ua‟ in the X and Y space 

respectively were computed using the equations expressed in 

Equations (1) and (2): 

ta = Xava                                  (1) 

ua = Yafa                                   (2) 

The scores extracted needed to fulfill the three objectives 

as explained with the maximum covariance between them. 

The proceeding mathematical expression was used in com-

puting the covariance as in Equation (3): 

cov(ta, ua) =
∑*(ta−t̅a)(ua−u̅a)+

n−1
                  (3) 

The scores were found subject to the constraint that the 

loadings when summed up would result in giving a unit 

length. In making analysis and interpreting scores, though 

there are two sets of scores which are computed, the t-scores 

are used due to the fact that they are easily interpretable and 

readily available. The reason behind neglecting the u-scores 

during interpretation and analysis is based on the foundation 

that the u-scores are only available when the dependent vari-

able is known. 

2.3.2. Principal Component Analysis 

The Principal Component Analysis is a technique used in 

finding patterns in data. Once the patterns of the data are 

determined, the data can be compressed i.e. the dimension(s) 

of the data can be reduced without losing much information 

[12]. 

The eigen values were determined employing the algebra-

ic expression stated in Equation (4): 

|𝐴 − 𝜆𝐼| = 0                             (4) 

The covariance between the independent variables were 

determined as represented by „A‟ above, after which the 

identity matrix was constructed. The determinant was then 

computed to obtain the eigen values. The corresponding eig-

en vectors were obtained using the formula expressed in 

Equation (5): 

(𝐴 − 𝜆𝐼)𝑋 = 0                            (5) 

The determination of the eigen values and vectors allowed 

for the most important components to be chosen. The Non-

Iterative Partial Least Square algorithm (NIPALS) which is a 

cross validation technique assists in giving the number of 

components which explain much of the variance in the data 

but the components to be chosen is based on the discretion of 

the analyst. 

The values which constitute the Eigen vectors when 

summed gave a unit length which is a constraint that needs to 

be satisfied. The eigen vectors which also takes the name 

loadings were used in transforming the data to obtain the 

scores. The scores are the projection of the data onto the 

principal components. Each principal component consists of 

the scores and the eigen vector. The transformed data is 

computed using the equation expressed in Equation (6): 
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Z= X * U                                    (6) 

Where, X is a matrix of the original data, U being the eig-

en vectors or principal components chosen and Z the scores 

or a transformation matrix in a lower n-dimensional space. 

2.3.3. Back Propagation Neural Network 

The Back Propagation Neural Network was used as a pre-

dictive model for the exercise. The model is a well-known 

algorithm in the deep learning environment and it serves the 

purpose of training feedforward neural networks for super-

vised learning. The model needed a number of ingredients in 

order to generate the results required. To achieve this, the 

data obtained from PCA, PLS and the whole scaled data 

were segregated into parts where the majority of it about 70% 

was used as the training data and the 30% of the data was 

used to validate and test the model. The model requires an 

input data for which forms the basis for prediction and target 

data which would be the yardstick for which the outputs de-

termined would be compared. Five (5) input neurons, 10 

neurons in the hidden layer and an output neuron character-

ized the model for prediction. The Levenberg Marquardt 

algorithm was used for the training and the LEARNGDM 

was the gradient descent used as the adaption learning func-

tion in MATLAB. The performance function used was the 

mean square error (MSE) with the transfer function being the 

TANSIG chosen based on its ability to solve nonlinear prob-

lems. The mean square error was computed for each tech-

nique and also for the dimensionally unreduced data to ena-

ble the determination of their performance. 

2.3.4. Model Accuracy Assessment 

To ascertain the accuracies of the models, the statistical 

indicators listed below were adopted based on the equations 

depicted from Equation 7 to Equation 8. The equations are 

indicators helping to make fair evaluation of the models and 

they include Root Mean Square (RMSE), R
2
 which is coeffi-

cient of determination, Data Scaling, R is correlation coeffi-

cient, mean and Standard Deviation. 

zXi = (Xi -x̅) / Std(X)                         (7) 

zYi = (Yi -x̅) / Std(Y)                         (8) 

Equation (9) was used in scaling the predictor variables, to 

ensure a zero mean and a unit standard deviation. The scaled 

data augmented the computation of the correlation coeffi-

cient, R. 

Rx, y = 𝛴[zXi * zYi] / n-1                        (9) 

Where n is the number of observations, Oi and Pi being 

observed and predicted data respectively with the difference 

providing the errors. The Root Mean Square was computed 

using Equation (10). 

RMSE= √∑ (Oi−Pi)
2n

i=1

n
                    (10) 

The dependent variable, the observed noise levels, were 

centered using Equation (11). 

yi = Yi − y̅                                 (11) 

3. Results and Discussion 

3.1. Results Obtained After Prediction 

Table 1 displays the errors obtained using both hybridized 

models on the primary data. It also displays predicted noise 

levels for both models. 

Table 1. Predicted Noise Levels with Associated Errors. 

Observed Observed (Centred) Predicted (PCA) Error (PCA) Predicted (PLS) Error (PLS) 

65 -20.2245 -17.2029 -3.0216 -20.2245 0.0000 

78 -7.2245 -6.7765 -0.448 -7.2241 -0.0004 

84 -1.2245 -0.6589 -0.5656 -0.2013 -1.0232 

84 -1.2245 0.1041 -1.3286 -1.2249 0.0004 

75 -10.2245 -10.141 -0.0835 -10.2246 0.0001 

86 0.7755 2.1905 -1.415 0.7754 0.0001 

79 -6.2245 -6.7765 0.552 -7.2241 0.9996 

88 2.7755 2.7992 -0.0237 2.7758 -0.0003 

85 -0.2245 0.0805 -0.305 0.2759 -0.5004 
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Observed Observed (Centred) Predicted (PCA) Error (PCA) Predicted (PLS) Error (PLS) 

86 0.7755 0.0805 0.695 0.2759 0.4996 

89 3.7755 4.6571 -0.8816 1.5378 2.2377 

90 4.7755 4.6571 0.1184 1.5378 3.2377 

91 5.7755 5.8973 -0.1218 5.7508 0.0247 

98 12.7755 12.2568 0.5187 12.6617 0.1138 

96 10.7755 8.2406 2.5349 12.7685 -1.9930 

94 8.7755 10.7517 -1.9762 8.5991 0.1764 

83 -2.2245 -1.6951 -0.5294 -1.2266 -0.9979 

81 -4.2245 -2.449 -1.7755 -4.2289 0.0044 

84 -1.2245 -1.6951 0.4706 -1.2266 0.0021 

85 -0.2245 -0.0421 -0.1824 -0.2238 -0.0007 

75 -10.2245 -10.2298 0.0053 -10.2239 -0.0006 

76 -9.2245 -10.2298 1.0053 -10.2239 0.9994 

74 -11.2245 -10.2298 -0.9947 -10.2239 -1.0006 

77 -8.2245 -6.8932 -1.3313 -7.2241 -1.0004 

79 -6.2245 -6.8932 0.6687 -7.2241 0.9996 

74 -11.2245 -12.8798 1.6553 -11.7244 0.4999 

73 -12.2245 -12.8798 0.6553 -11.7244 -0.5001 

86 0.7755 0.7813 -0.0058 0.7772 -0.0017 

88 2.7755 4.3186 -1.5431 2.7765 -0.0010 

84 -1.2245 -3.1993 1.9748 -1.226 0.0015 

89 3.7755 5.5993 -1.8238 6.2817 -2.5062 

87 1.7755 2.0958 -0.3203 1.8026 -0.0271 

89 3.7755 5.1805 -1.405 4.7766 -1.0011 

90 4.7755 5.1805 -0.405 4.7766 -0.0011 

95 9.7755 11.0214 -1.2459 11.6161 -1.8406 

98 12.7755 10.1008 2.6747 10.8753 1.9002 

97 11.7755 11.0214 0.7541 11.6161 0.1594 

87 1.7755 0.8545 0.921 1.7757 -0.0002 

86 0.7755 0.8545 -0.079 1.7757 -1.0002 

89 3.7755 6.6165 -2.841 3.7719 0.0036 

93 7.7755 7.9642 -0.1887 8.7675 -0.9920 

95 9.7755 7.9642 1.8113 8.7675 1.0080 

94 8.7755 5.5993 3.1762 6.2817 2.4938 

96 10.7755 10.1008 0.6747 10.8753 -0.0998 

92 6.7755 5.1805 1.595 4.7766 1.9989 

88 2.7755 1.8495 0.926 2.7764 -0.0009 

80 -5.2245 -6.8932 1.6687 -7.2241 1.9996 

76 -9.2245 -6.8932 -2.3313 -7.2241 -2.0004 

http://www.sciencepg.com/journal/ajnna


American Journal of Neural Networks and Applications http://www.sciencepg.com/journal/ajnna 

 

20 

Observed Observed (Centred) Predicted (PCA) Error (PCA) Predicted (PLS) Error (PLS) 

68 -17.2245 -17.211 -0.0135 -17.2224 -0.0021 

Table 2. Accuracy Assessment of Models using Statistical Indicators. 

Model Standard Deviation Mean RMSE R2 

PCA-BPNN 1.386138 -0.04348 1.135 0.984 

PLS-BPNN 1.144861 0.058541 1.373 0.987 

RMSE = Root Mean Square Error, R2 = Coefficient of Correlation 

Table 3. Summary of Principal Component Analysis. 

Components R²X R²X (Cumul.) Eigenvals. Q² Limit Q² (Cumul.) 

1 0.45837 0.45837 2.29184 0.2201 0.21667 0.2201 

2 0.26572 0.72409 1.32859 0.20066 0.26596 0.3766 

Table 4. Principal Component with their Corresponding Eigenvalues and Variance. 

Component Eigenvalue Percentage of Variance (%) Cumulative Variance (%) 

1 2.29194 45.84 45.84 

2 1.32852 26.57 72.41 

3 0.69895 13.98 86.39 

4 0.58166 11.63 98.02 

5 0.09893 1.98 100.00 

Table 5. Coefficients of Principal Components. 

Predictors Coefficients of PC1 Coefficients of PC2 

POP -0.45426 0.35983 

Traffic 0.51782 0.26625 

Road net. -0.0031 0.74152 

Land use 0.4031 0.43554 

Dist. 0.60251 -0.24511 

Table 6. Loadings of Predictors on Principal Components. 

Predictors PC1 PC2 

POP 0.693273 0.404026 
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Predictors PC1 PC2 

Traffic -0.779713 0.309337 

Road net. 0.015944 0.859016 

Land use -0.603578 0.505647 

Dist. -0.915805 -0.275817 

 

Figure 2. Scree Plot Displaying PCs and Eigenvalues. 

 
Figure 3. A Graph of Predicted and Observed Noise Levels using PCA. 
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Figure 4. Loadings in PCA. 

 
Figure 5. A Graph of Predicted and Observed Noise Levels Using PLS. 

 

Figure 6. Box and Whisker Plots of Model Errors. 
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Table 7. Summary of Partial Least Squares. 

Number of 

Factors 

Variance Explained for X 

Effects (%) 

Cumulative x vari-

ance (%) 

Variance Explained for Y 

Responses (%) 

Cumulative y vari-

ance (%) 

1 42.8286 42.8286 56.39184 56.39184 

2 27.67881 70.50741 9.98528 66.37712 

3 5.19388 75.7013 26.75447 93.13159 

4 11.49075 87.19205 2.89362 96.02521 

5 12.80795 100 0.02797 96.05318 

Table 8. Partial Least Squares Loadings. 

Predictors Factor 1 Factor 2 

POP -5.43909 0.51595 

Traffic 4.35257 3.1581 

Road net. -2.33731 5.24753 

Land use 2.40894 5.27832 

Dist. 6.55699 0.89002 

 

Figure 7. Noise Map of the Study Area After Prediction. 
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3.2. Discussion 

Dimensionality reduction on the observed data using the 

Principal Component Analysis provided a number of Prin-

cipal Components for which the first two sets of scores 

served as input for the Back Propagation Neural Network. 

The two components were selected based on the notion that 

the first and second components contributed 46% and 27% 

to the total variance. A cumulative of about 73%. The scree 

plot in Figure 2 shows a sharp bend after the third compo-

nent and it is not entirely out of place to add the third com-

ponent but from the table, the third component contributes 

very little to the variance and that justifies why it was not 

selected. A moderately concrete justification could also be 

stated to support the argument of selecting two components. 

This is with respect to the Eigenvalues obtained for both 

components. An inference from Table 4 gives the eigenval-

ues 2.29 and 1.32 for the first and second components and 

the rest less than 1. 

One might think that the reason for ignoring the other 

three components was as a result of the absence of their im-

portance but that would not be a right justification for that 

attempt. In totality, all the components contributed to the 

makeup of the total variance but the whole concept is to re-

duce the dimensions of the data such that the components 

which carry much variance are selected to explain the data 

and thus to provide ease of analyses and visualization. 

The coefficients obtained in Table 5 showed how each of 

the five predictors or independent variables contributed to 

the Principal Components. Basically, the coefficients express 

the influence of each predictor on the Principal Components. 

In PC1, distribution, traffic and land use show positive corre-

lation between them and from Table 6, the predictor variable 

(population) loads strongly on PC1. It was realized that a 

negative correlation existed between population and road 

network in PC1. Rightly so, an increase in distribution in a 

given area reduces the population in the area and an increase 

in land use decreases road network and vice versa. 

In PC2, population, traffic, road network and land use 

have a positive correlation with one another where road net-

work contribute strongly as compared to land use whose in-

fluence is fairly strong and slightly above the other predictor 

variables. Road network in PC2, loaded strongly when com-

pared to the other predictor variables. 

In the Partial Least Squares, two factors were used with a 

cumulative of 66% in the dependent variable and 71% in the 

independent variables. As explained earlier, the Partial Least 

Squares finds the factor(s) which explain much of the vari-

ance in both the outcome variable (y) and the predictor vari-

ables (x). In Table 8, the predictor variables, distribution and 

traffic load heavily on factor 1 whilst road network and land 

use load heavily on factor 2. 

Figure 6 displays the box and whisker plots for the error 

distribution after prediction. The upper and lower whiskers 

depict maximum and minimum errors for both methods re-

spectively. The outliers as seen predominantly above and 

below the whiskers of the PLS-BPNN were determined using 

the 1.5 IQR rule. It is realized that the PLS-BPNN had a nar-

row interquartile range, proving less variability in the PLS-

BPNN compared to the PCA-BPNN. 

Root Mean Square Error computed for the Principal Com-

ponent Analysis, Partial Least Squares and the unreduced 

data were 1.373, 1.135 and 1.433 respectively. The PLS-

BPNN produced a better RMSE chiefly due to its ability to 

incorporate the dependent variable in determining the factors. 

The data showing the predicted values, errors, the computed 

Root Mean Square Errors for all the methods among other 

results are displayed in the appendix. 

Figure 7 displays the map of the study area using the pre-

dicted noise levels from the PLS-BPNN. The map shows 

areas experiencing very high noise levels and it could be 

inferred that these areas are the mining areas where their 

activities breed such noise. The results proved that these are-

as experienced over 65 dba of noise levels which is above 

the Environmental Protection Agency standards, and as such 

poses health risk to inhabitants. The areas which experience 

such low noise levels is as a result of the less dense de-

mographics and low trade activities in the area. 

4. Conclusion 

Every data can be displayed in its inherent dimensions 

based on its characteristic variables and any method which 

becomes effective in eliminating redundant dimensions to 

ensure easy visualization and processing should be utilized. 

The Principal Component Analysis and Partial Least Squares 

were used in truncating the dimensions of the noise data and 

the resultant data served as inputs into a Back Propagation 

Neural Network. The accuracies of these methods based on 

their performance using the observed noise levels dataset 

were assessed after the process. The PCA determined com-

ponents which explained much information (variance) in the 

data by providing associated eigenvalues whilst the Partial 

Least Squares provided factors which explained much in-

formation in the dataset using both the dependent and inde-

pendent variables. 

The observed noise level data used as input for the Back 

Propagation Neural Network provided the least accuracy, 

with RMSE of 1.433 as compared to when both the Principal 

Component Analysis, 1.373 and the Partial Least Squares 

1.135 when used on the Neural Network independently. The 

methods used in truncating the dimensions of the data al-

lowed for easy training, testing and validation together with 

reducing learning time and improved the accuracy of the 

Artificial Neural Network. This can be assessed in the re-

gression models obtained for each method. 

For better data analysis and visualization, it is very essen-

tial that methods which provide optimum results are used in 

reducing the dimensions of the data. This does not only elim-
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inate redundant information from the data, it also helps sim-

plifies the analysis to be done. 

Abbreviations 

PCA Principal Component Analysis 

PLS Partial Least Square 

BPNN Back Propagation Neural Network 

TMC Tarkwa Mining Community 
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